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Abstract
The existence and properties of coherent pattern in the multisoliton solutions of
the dKP equation over a finite field are investigated. To that end, starting with
an algebro-geometric construction over a finite field, we derive a ‘travelling
wave’ formula for N-soliton solutions in a finite field. However, despite it
having a form similar to its analogue in the complex field case, the finite-
field solutions produce patterns essentially different from those of classical
interacting solitons.

PACS numbers: 02.30.Ik, 02.10.De, 05.45.Yv

1. Introduction

There are many diverse methods in the modern theory of integrable systems. One of them, an
algebro-geometric approach [8, 9], was applied to obtain solutions of discrete soliton equations
over finite fields [1, 3, 5]. Within this approach efficient tools for finding algebro-geometric
solutions based on hyperelliptic curves of arbitrary genus were proposed [2, 4]. These results
are in direct analogy to the complex field case, but there are some peculiarities. For instance,
since finite fields are never algebraically closed there are many more possibilities for the
construction of breather-type solutions (for short discussion see [5]). Also other properties,
such as finiteness or cyclic structure, reflect in the character of solutions.

Our aim here is to discuss the appearance of stable travelling patterns for a general
N-soliton solution over a finite field. To do that we write a general determinant formula (8)
for N-soliton solution in a travelling wave form (12). The formula obtained is analogous to
the typical form of a soliton solution of a Hirota bilinear equation (see e.g. [14], p 23). Since
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the vacuum solution in this setting is τ ≡ 1, it is necessary to make a slight modification of
the algebro-geometric construction presented in [3].

The determinant form of the solutions of the dKP equation was already investigated [15].
Since the determinant formula is neither a Casorati nor a discrete Gram-type determinant,
we provide a direct link to the travelling wave form without referring to the previous work.
Moreover, even though we are mainly concerned with finite fields, we point out that the
calculations performed are valid for arbitrary fields.

There is one more reason to transform the finite-field solutions into travelling wave form.
There exists a well-established systematic procedure for deriving soliton cellular automata
starting from discrete soliton equations in Hirota form [12, 16]. Since solutions over a finite
field could be interpreted also as cellular automata, we need a convenient form to investigate
relationships between them.

This paper is organized as follows. In section 2 we recall and transpose some results from
an algebro-geometric construction of finite-field-valued solutions of the discrete KP equation
with explicit determinant formula for N-soliton solutions [3] to the case of dKP with arbitrary
coefficients (2). In the next section, we prove that the N-soliton solution can be rewritten
in travelling wave form. As a remark we also give an alternative proof which explains why
only pairwise interaction terms appear in the N-soliton solutions which appear as substitution
operations for matrix elements. In section 4, we discuss the patterns produced by finite-field
solitons and give some examples. The main conclusion is that travelling wave patterns in
N-soliton solutions obtained by the algebro-geometric approach are generally absent for
N > 2. We finish with some conclusions and remarks on possible future work in the
last section.

2. Algebro-geometric construction of solutions of dKP equation over finite fields with
simple vacuum

A finite-field version of an algebro-geometric construction of solutions τ : Z
3 → F for the

discrete KP equation

(T1τ)(T23τ) − (T2τ)(T13τ) + (T3τ)(T12τ) = 0 (1)

was studied in [3]. By Ti we denoted here a shift operator in a variable ni , for example
T2τ(n1, n2, n3) = τ(n1, n2 + 1, n3). If we prefer to have vacuum solution τ̄ (n1, n2, n3) ≡ 1
then we need to consider the dKP equation with coefficients Zi ∈ F, i.e.,

Z1(T1τ̄ )(T23τ̄ ) − Z2(T2τ̄ )(T13τ̄ ) + Z3(T3τ̄ )(T12τ̄ ) = 0 (2)

with the constraint

Z1 − Z2 + Z3 = 0. (3)

Note that a correspondence between τ and τ̄ is achieved by taking

τ̄ = (Z3/δ)
−n1n2(Z1/δ)

−n2n3(Z2/δ)
−n1n3τ (4)

for nonzero constants Z1, Z2, Z3 and any nonzero δ ∈ F.
It follows from [3], in the case of purely soliton solutions (i.e. from a curve of genus

g = 0), that N-soliton solutions can be expressed in a determinant form (theorem 1). As a
component of this formula we need a vacuum solution of (1)

τ0 = (A1 − A2)
n1n2(A1 − A3)

n1n3(A2 − A3)
n2n3 , (5)

where Ai ∈ F, and auxiliary functions φ0
α, α = 1, 2, . . . , N , in the form

φα(t) = 1

t − Cα

3∏
k=1

(
t − Ak

Cα − Ak

)nk

. (6)
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Parameters Cα , where α = 1, . . . , N , may take value in some finite algebraic extension
L ⊃ K, but they are constrained to the K-rationality conditions ∀σ ∈ G(L/K), σ (Cα) = Cα′ .
By G(L/K) we denoted the Galois group, i.e. the group of automorphisms of L, with fixed
field K. Similarly, N pairs Dβ,Eβ ∈ L, for β = 1, . . . , N , satisfy the K-rationality conditions
∀σ ∈ G(L/K) : σ({Dβ,Eβ}) = {Dβ ′ , Eβ ′ }. These conditions give rise to some generalization
of breather-type solutions (see [5]). We assume that all parameters in the construction are
distinct. Finally, denote by φA(D,E) the N × N matrix with element in row β and column
α given by

[φA(D,E)]αβ = φα(Dβ) − φα(Eβ). (7)

Theorem 1. The function τ(n1, n2, n3) given by

τ = τ0 · γ det φA(D,E), (8)

where γ ∈ F is some constant, is the F-valued N-soliton solution of the discrete KP
equation (1).

In the case of dKP equation (2), it follows from (4) that a vacuum function τ̄0 can be
chosen in the form

τ̄0 =
(

A1 − A2

Z3

)n1n2
(

A1 − A3

Z2

)n1n3
(

A2 − A3

Z1

)n2n3

.

Then for parameters A1 − A2 = Z3, A1 − A3 = Z2, A2 − A3 = Z1 we have τ̄0 ≡ 1 and

τ̄ = det φA(D,E) (9)

is the F-valued N-soliton solution of equation (2).

Remark. The same result can also be derived using the general algebro-geometric construction
of solutions of the version of the dKP equation given in (2). To do this, the wavefunction ψ is
given by definition 1 in [3], but with a different definition of the expansions of ψ(n1, n2, n3)

at Ai , namely, for i, j, k = 1, 2, 3 with i �= j �= k �= i,

ψ(n1, n2, n3) = t
ni

i

∞∑
s=0

Z
nk

j Z
nj

k ζ̄ (i)
s (n1, n2, n3)t

s
i ,

where ti are the fixed K-rational local parameters at Ai . The linear equation for ψ in the
general case is of the form

(Tiψ − Tjψ) + Zk

Tj ζ̄
(i)
0

ζ̄
(i)
0

ψ = 0.

The remaining part of the construction is the same as in [3].

3. Travelling wave form for the N-soliton solution

In this section, we wish to transform the soliton solutions given in (8) into an equivalent but
more convenient form. In doing this, we will use the fact, referred as a gauge invariance, that
for any solution τ of the dKP equation, τ ′ = αn1βn2γ n3δ · τ is also a solution for any constant
α, β, γ, δ. We write τ ′ 	 τ if τ ′ can be obtained from τ using this gauge invariance.
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Lemma 1. Let M(x, y), where x = (x1, . . . , xn) and y = (y1, . . . , yn), denote the Cauchy
matrix, the matrix with (i, j)th entry 1/(xi − yj ). It is well known that

det M(x, y) =
∏

p<q(xp − xq)(yq − yp)∏
p,q(xp − yq)

=
∏
p<q

(xp − xq)(yq − yp)

(xp − yq)(xq − yp)

∏
p

1

(xp − yp)
. (10)

Also we have

M(x, y)−1M(x, z) = diag

( ∏
p(xp − yi)∏

p �=i (yp − yi)

)
M(y, z) diag

(∏
p(yp − zi)∏
p(xp − zi)

)
. (11)

Proof. Let xk̂ = (x1, . . . , xk−1, xk+1, . . . , xn). Then, the (i, j)th entry in the inverse of M(x, y)

is

[M(x, y)−1]i,j = (−1)i+j det M(x̂ , yı̂ )

det M(x, y)
= (xj − yi)

∏
p �=j

(xp − yi)

(xj − xp)

∏
p �=i

(xj − yp)

(yp − yi)
.

Further, the (i, j)th entry in the product M(x, y)−1M(x, z) is∏
p(xp − yi)∏

p �=i (yp − yi)

n∑
k=1

∏
p �=i (xk − yp)

(xk − zj )
∏

p �=k(xk − xp)

=
∏

p(xp − yi)∏
p �=i (yp − yi)V (x)

∏
p(xp − zj )

n∑
k=1

(−1)n−kV (xk̂)
∏
p �=i

(xk − yp)
∏
p �=k

(xp − zj ),

where V (x) = ∏
p>q(xp − xq) is the Vandermonde determinant in variables x1, . . . , xn and

V (xk̂) is the Vandermonde determinant in variables x1, . . . , xk−1, xk+1, . . . , xn. In the (i, j)th
entry, the sum is of degree (n − 1)(n − 2)/2 + 2(n − 1) = n(n − 1)/2 + n − 1 and we will
factorize it by identifying all of its zeros. First, there are n(n − 1)/2 coming when xr = xs

for any r < s and n − 1 from yr = zj for r �= i. This argument uses the fact that for any
polynomial function f of degree less than n − 1 one has

∑n
k=1(−1)n−kV (xk̂)f (xk) = 0 since

the left-hand side is the expansion by the final column of the vanishing determinant


1 x1 · · · xn−2
1 f (x1)

...
...

...
...

1 xn · · · xn−2
n f (xn)


 .

Hence, the (i, j)th entry is, up to a constant factor,∏
p(xp − yi)∏

p �=i (yp − yi)

∏
p �=i (yp − zj )∏
p(xp − zj )

=
∏

p(xp − yi)∏
p �=i (yp − yi)

1

yi − zj

∏
p(yp − zj )∏
p(xp − zj )

.

To verify that it is precisely correct, and hence complete the proof of (11), we observe that, as
it should, the above equals δij , the Kronecker delta, when z = y. �

Theorem 2. Let q denote any fixed generator of F
∗, i.e., a multiplicative subgroup of the

finite field F. The N-soliton solution (9) of the dKP equation over a finite field F admits the
following form:

τ ′ =
∑

J⊂{1,...,N}
(−1)#J


 ∏

i,i ′∈J ;i<i ′
aii ′


 q(

∑
j∈J η̂j ), (12)
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where the sum is taken over all subsets of {1, . . . , N} and #J denotes the cardinality of J .
In (12),

aij := (Di − Dj)(Ei − Ej)

(Di − Ej)(Dj − Ei)
, (13)

the exponents are η̂j = ηj + η0
j where

ηj :=
3∑

k=1

pk
jnk, (14)

and the parameters pk
j and phase constants η0

j are defined by

qpk
i := Ei − Ak

Di − Ak

and qη0
i :=

N∏
p=1

(Cp − Di)

(Cp − Ei)

N∏
p=1;p �=i

(Dp − Ei)

(Dp − Di)
. (15)

The name travelling wave form comes from the form of qη̂j , which are in direct analogy
with the usual term exp(�k�x − ωt) of linear plane waves. Note that for any τ satisfying (2)
τ(1, 0, 0), τ(0, 1, 0) and τ(0, 0, 1) depend only on cross-ratio of appropriate points on the
projective line. We also point out that to find pk

i and η0
ij we need to solve a discrete logarithm

problem.

Proof. The determinant in (9) is

τ̄ = det

(
−M(C,D) diag

(
3∏

k=1

(
Di − Ak

Ci − Ak

)nk

)
+ M(C,E) diag

(
3∏

k=1

(
Ei − Ak

Ci − Ak

)nk

))
,

where M denotes the Cauchy matrix as defined in lemma 1, and so

τ̄ 	 τ ′ := det

(
I − M(C,D)−1M(C,E) diag

(
3∏

k=1

(
Ei − Ak

Di − Ak

)nk

))
.

Using (11) and the fact that for any matrices P,Q, det PQ = det QP , we get

τ ′ = det(I − M(D,E) diag(Di − Ei) diag(qη̂i )).

Now the determinant det(P + Q), of the sum of two N × N matrices, may be expressed
as the sum over all subsets J ⊂ {1, . . . , N} of det RJ where the ith column of RJ equals the
ith column of Q if i ∈ J and otherwise equals the ith column of P. Using this fact,

τ ′ =
∑

J⊂{1,...,N}
(−1)#J det MJ (D,E)

∏
i∈J

(Di − Ei)q
η̂i ,

where MJ denotes the Cauchy matrix with row and column indices restricted to J . Formula
(12) now follows immediately from (10). �

Remark. We also present here an alternative proof of theorem 2. The argument presented
shows why there is only pairwise interaction of solitons.

Starting from (9), for each i one divides the ith column of (7) by φi(Di) and we see that
τ̄ 	 τ ′ = det  where

[]ij =
((

Di − Ci

Dj − Ci

)
−

(
Di − Ci

Ej − Ci

)
qηj

) 3∏
k=1

(
Dj − Ak

Di − Ak

)nk

, (16)
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where ηj is given by (14), is also a solution of (2). Further, if we define

[̂]ij :=
(

Di − Ci

Dj − Ci

)
−

(
Di − Ci

Ej − Ci

)
qηj (17)

it is easy to see that det  	 det ̂.

We will next show how det ̂ can be obtained from a vacuum solution det ̂0 where
[̂0]ij = (

Di−Ci

Dj −Ci

)
by means of substitution operations. The key idea we use in finding

coefficients of different powers of q in formula (12) is the observation that, according to (17),
for each term including qηk we should make the substitution(

Di − Ci

Dk − Ci

)
−→ −

(
Di − Ci

Ek − Ci

)
(18)

for each i, in the kth row of ̂0. Then, det ̂ can be expressed in terms of determinants
obtained by making appropriate replacements in det ̂0.

First note that

det ̂0 = M(−C,−D)
∏

i

(Di − Ci) =
N∏

i,j=1;i<j

(Ci − Cj)(Di − Dj)

(Ci − Dj)(Di − Cj)
. (19)

Denote by J the matrix with replacements (18) in the rows k ∈ J . We first consider the
case J = {k} for fixed k. Since Dk appears only in the kth row and kth column, then J after
multiplying kth column by −(

Ek−Ck

Dk−Ck

)
becomes the determinant (19) with Dk replaced by Ek .

Then,

det J = −
(

Dk − Ck

Ek − Ck

)
det ̂0

∣∣∣∣
Dk→Ek

= −
(

Dk − Ck

Ek − Ck

) N∏
i,j=1;i<j

(Ci − Cj)(Di − Dj)

(Ci − Dj)(Di − Cj)

∣∣∣∣
Dk→Ek

= −
(

Dk − Ck

Ek − Ck

) 
 N∏

j ′=1;j ′ �=k

(
Dk − Dj ′

Dk − Cj ′

)−1 (
Ek − Dj ′

Ek − Cj ′

)
 det ̂0.

In the notation of the theorem, the coefficient of qηj is det {k} = −qη0
k det ̂0.

Now we consider coefficient of q
∑

k∈J ηk . This is the determinant det J obtained from
det ̂0 by making replacements (18) in rows k ∈ J for general J ⊂ I . The number of elements
in J is denoted by #J . Repeating the procedure described above for each k ∈ J we arrive at

det J = (−1)#J

(∏
k∈J

Dk − Ck

Ek − Ck

)
det ̂0

∣∣∣∣
Dk→Ek;k∈J

. (20)

Then, we have

det ̂0|Dk→Ek;k∈J =

 ∏

{ki ,kj }⊂J

(
Dk1 − Dk2

)(
Ek1 − Ek2

)
(
Ek1 − Dk2

)(
Dk1 − Ek2

)



×
∏
k∈J


 N∏

j ′=1;j ′ �=k

(
Dk − Dj ′

Dk − Cj ′

)−1 (
Ek − Cj ′

Ek − Cj ′

)
 det ̂0.

The extra terms for pairs {ki, kj } ∈ J are present because, since kj �= ki , we also need to

perform the replacements Dkj
→ Ekj

in the factor
∏N

j ′=1;j ′ �=ki

(Dki
−Dj ′

Dki
−Cj ′

)−1(Eki
−Dj ′

Eki
−Cj ′

)
. This is
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done by multiplying by
(Dk1 −Dk2 )(Ek1 −Ek2 )

(Ek1 −Dk2 )(Dk1 −Ek2 )
. We point out here that the extra corrections are for

pairs {ki, kj } ∈ J and it is this that is responsible for the existence of only pairwise interaction
terms in formula (12). So finally, the coefficient of q

∑
j∈J ηj is

det J = (−1)#J


 ∏

i,i ′∈J ;i<i ′
aii ′


 (∏

k∈J

qη0
k

)
det ̂0. (21)

After dividing all terms by det ̂0 and collecting them together we obtain formula (12).
Note that our considerations are valid for any field of definition of the parameters Ci

and Dj .

Remark. The results obtained above also apply to the discrete analogue of generalized Toda
equation [6]

Z1fm1+1,m2,m3fm1−1,m2,m3 + Z2fm1,m2+1,m3fm1,m2−1,m3 + Z3fm1,m2,m3+1fm1,m2,m3−1 = 0.

The transition from dKP to DAGTE (where we assume (m1 +m2 +m3) ≡ 0 mod 2) is given by
fm1,m2,m3 := τ(n1, n2, n3) where ni = 1

2 (mi − mj − mk) for i �= j �= k �= i or, equivalently,
mi = −(nj + nk) for i �= j �= k �= i. In this situation, f0,0,0 = τ(0, 0, 0). With the variables
m1,m2,m3 the exponents of a travelling wave given by (14) have similar form, namely
ηi = ∑3

j=1 p̂
j

i mj , where p̂
j

i = ∑3
k=1(2δjk − 1)pk and δjk is the Kronecker delta.

4. Pattern structures in soliton interactions

So far we have seen that the finite-field N-soliton solutions we obtained have the same structure
as the complex field case. In particular, the travelling wave form (12) is completely analogous
to the complex field case. Despite this correspondence, the typical soliton-like interaction
pattern is not present in the finite-field case. Below we argue that one cannot expect that an
arbitrary N-soliton solution over a finite field will be a collection of asymptotically separated
waves interacting as in the way characteristic of the complex field case.

These differences in the interaction properties follow naturally from the differences in
structure between finite fields and the complex numbers. First, finite fields have no good (total)
ordering which are consistent for both addition and multiplication and so it is impossible to
find in the finite filed case a direct analogue of wave amplitude; rather than following a wave
propagation by observing how its points of maximum amplitude move we may only trace the
propagation of patterns. The appearance of a one-soliton solution however in the finite-field
case mimics the usual appearance quite well, as can be seen in figure 1.

The next difference results from the replacement of exponentials in the complex case by
powers of a generator q of the multiplicative group F

∗ of the finite field F. Since q |F|−1 = 1,
this implies periodicity of τ(n1, n2, n3) with respect to each variable ni . As a consequence,
we cannot discuss the asymptotic behaviour of the solution in usual sense. Moreover, for any
given solution one could restrict analysis to a finite base cube containing all information about
the solution, but the rest is periodic repetition. The length of any edge of a base cube is at
most |F| − 1.

Considering theorem 2, the ith one-soliton component of the N-soliton solution is
unchanged by a shift in the lattice by �ni = (

ni
1, n

i
2, n

i
3

)
for any ni

1, n
i
2, n

i
3 satisfying qηi = 1

or, equivalently,

ηi =
3∑

k=1

pk
i n

i
k ≡ 0 mod (|F| − 1). (22)
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Figure 1. A plot of τ(n1, n2, n3) function of three one-soliton solutions (see examples for details).
We fix n1 = 0, and n2, n3 ∈ {0, . . . , 16}. The n2 axis is directed to the right and the n3 axis is
directed upwards. Elements of F17 are represented on the following scale: from 0 (dark) to 16
(light grey).
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Figure 2. A plot of τ(n1, n2, n3) for the three two-soliton interactions (AB, AC, BC) of one-soliton
solutions presented in figure 1. We fix n1 = 0, and n2, n3 ∈ {0, . . . , 16}. In the second row we
have n1 = 1. The n2 axis is directed to the right and the n3 axis is directed upwards.

Since expression (12) contains qηi for i ∈ {1, 2, . . . , N}, a period vector �n = (n1, n2, n3) for
this solution should be a common solution of (22) for all i. In general, it is impossible to find a
nonzero solution for N � 3 and it means there is no additional structure within the base cube
in this case. An example of such a three-soliton solution is shown in figure 3 and the structure
of a base cube is discussed below in more detail.
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Figure 3. A three-soliton solution τ(n1, n2, n3) being the solitonic sum of those from figure 1
for n1 = 0, 1, 2, 4 and 8. The n2 axis is directed to the right and the n3 axis is directed upwards.
Elements of F17 are represented on the following scale: from 0 (dark) to 16 (light grey).

Examples. Fix the finite field to be F = F17, i.e. the field of integers modulo 17. As a generator
of F

∗ we choose q = 3. Let us fix A1 = 7, A2 = 4 and A3 = 3 so that the coefficients in the
dKP equation are A2 − A3 = Z1 = 1, A1 − A3 = Z2 = 4 and A1 − A2 = Z3 = 3.

One-soliton solutions. In figure 1, we present three one-soliton solutions of the dKP
equation over F. For the solution A on the left, denoted by subscript 1 we have chosen
C1 = 11,D1 = 6, E1 = 9; for the solution B in the middle, denoted by 2, we have
C2 = 10,D2 = 12, E2 = 14 and finally C3 = 8,D3 = 13, E3 = 15 for the solution C
on the right. The respective parameters in the exponent (14) are

�p1 = (
p1

1, p
2
1, p

3
1

) = (6, 7, 14), �p2 = (
p1

2, p
2
2, p

3
2

) = (6, 9, 5),

�p3 = (
p1

3, p
2
3, p

3
3

) = (11, 5, 10).

Thus periods in variables n1, n2, n3 are as follows: 8, 16, 8 for the soliton 1, 8, 16, 16 for
the soliton 2 and 16, 16, 8 for 3. We fixed n1 = 0, since increasing any variable by 1
results in shift in the other two variables and so the plots for any value of n1 are simply a
translation of the plots we present. This comes from the fact that in general there exists a
nonzero solution in two variables nj , nk of the single equation (22) with the third variable
ni being fixed (i, j, k ∈ {1, 2, 3}, i �= j �= k �= i). The special case is if pi is not a
linear combination of pj and pk with coefficients from Z mod (|F| − 1). (This could happen
for instance if pj and pk are zero divisors of |F| − 1.) In the case presented in figure 1,



958 M Białecki and J J C Nimmo

period vectors might be chosen to be �n1 = (1, 0, 3) for A, �n2 = (1, 0, 2) for B and
�n3 = (1, 1, 0) for C. Further, the period vectors �n for these solutions in the plane n2, n3

are �n1a = �n3a = (0, 2,−1), �n1b = �n3b = (0, 0, 8), �n2a = (0, 3, 1) and �n2b = (0,−1, 5).
(All periods vectors are not uniquely determined.)

Two-soliton solutions. In figure 2, the two-soliton solutions representing the interaction of two
of the one-soliton solutions shown in figure 1 are presented. The upper line is for n1 = 0 while
the lower is for n1 = 1. In the cases A interacting with B (called AB) and B interacting with
C (AC) it is a simple shift by respective vectors (1,−1,−4) and (1,−5,−5). (Note. Since
q16 = 1, the lines n = 0 and n = 16 are identical but both of them are shown on plots.) For
the case AC there are no such a shift, because the two equations (22) for i = 1 and i = 3 for n2

and n3 have no nonzero solution for any value of n1. This is because n1 · (6, 11) �∈ Z16 · (7, 5).
Since span(�n1a, �n1b) ∩ span(�n2a, �n2b) = {�0}, there are no nonzero period vectors in the plane
n2, n3 for either AB or BC. In contrast, for AC the period vectors in this plane are exactly the
same as for soliton A and C (since they are the same). Similarly, one could examine other
planes obtaining plane period vectors (0, 0, 8) for AC, (8, 0, 0) and (4, 8, 0) for AB and none
for BC. Periods for AB are (8, 16, 16), for AC are (16, 16, 8) and for BC are the maximal
(16, 16, 16). Note that BC shows that it is possible for a two-soliton solution to have no
structure within the base cube.

A three-soliton solution. In this case, there are three equations (22) for three variables, so in
general there are no nonzero solutions. The example presented in figure 3 using parameters
in A, B and C is of this kind. Because of this, there are no extra period vectors and so this
solution has no structure within a base cube.

It is clear that this is also the generic situation for the interaction of N-soliton solutions
obtained by the algebro-geometric approach for N > 2.

5. Concluding remarks

In summary, we have seen that the interaction of three or more finite-field soliton solutions of
the dKP equation has no more structure in the base cube than random data. Given a finite field
F of sufficient size, it would seem to be computationally impractical to attempt to reconstruct
the parameters Cα,Dα and Eα which define the solution, from the seemingly random data that
they generate. This leads one to imagine possible applications of such solutions in encrypted
data transmission. In conclusion, we note that applications of elliptic curves over finite fields
have already been studied for some time [7, 13]

Examining soliton solutions over finite fields is a relatively new subject and requires
further study. The approach we presented here is related to periodicity in two different ways.
The first is because of the algebro-geometric construction and the second comes from the
properties of finite fields. Moreover, finite extensions of finite fields are never algebraically
closed and this fact is reflected in the existence of many new possibilities in the construction
of breather-type solutions. In contrast with the case of the field of complex numbers, which
is an algebraically closed extension of the field of real numbers of degree two, for finite fields
we can have extensions of arbitrary degree. Simple examples and relevant terminology were
presented in [5]. From the other side, in the classical continuous case many types of breather-
type solutions are known, including ‘sophisticated’ complexitons (see [10, 11] and references
therein). It should be very interesting to investigate analogues of these for the finite field case.
However, it will require both substantial development of the theory discussed in this paper and
clarification of some details of complexiton solutions in a discrete setting. For these reasons,
we leave this topic for future research.
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